Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Singular conformally invariant trilinear forms and covariant differential operators on the sphere (1102.1861v1)

Published 9 Feb 2011 in math.RT

Abstract: Let $G=SO_0(1,n)$ be the conformal group acting on the $(n-1)$ dimensional sphere $S$, and let $(\pi_\lambda){\lambda\in \mathbb C}$ be the spherical principal series. For generic values of $\boldsymbol \lambda =(\lambda_1,\lambda_2,\lambda_3)$ in $\mathbb C3$, there exits a (essentially unique) trilinear form on $\mathcal C\infty(S)\times \mathcal C\infty(S)\times \mathcal C\infty(S)$ which is invariant under $\pi{\lambda_1}\otimes \pi_{\lambda_2}\otimes \pi_{\lambda_3}$. Using differential operators on the sphere $S$ which are covariant under the conformal group $SO_0(1,n)$, we construct new invariant trilinear forms corresponding to singular values of $\boldsymbol \lambda$. The family of generic invariant trilinear forms depend meromorphically on the parameter $\boldsymbol \lambda$ and the new forms are shown to be residues of this family.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube