Toric Construction of Global F-Theory GUTs (1101.4908v2)
Abstract: We systematically construct a large number of compact Calabi-Yau fourfolds which are suitable for F-theory model building. These elliptically fibered Calabi-Yaus are complete intersections of two hypersurfaces in a six dimensional ambient space. We first construct three-dimensional base manifolds that are hypersurfaces in a toric ambient space. We search for divisors which can support an F-theory GUT. The fourfolds are obtained as elliptic fibrations over these base manifolds. We find that elementary conditions which are motivated by F-theory GUTs lead to strong constraints on the geometry, which significantly reduce the number of suitable models. The complete database of models is available at http://hep.itp.tuwien.ac.at/f-theory/. We work out several examples in more detail.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.