Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cohomology of Standard Modules on Partial Flag Varieties (1101.3024v1)

Published 15 Jan 2011 in math.RT

Abstract: Cohomological induction gives an algebraic method for constructing representations of a real reductive Lie group $G$ from irreducible representations of reductive subgroups. Beilinson-Bernstein localization alternatively gives a geometric method for constructing Harish-Chandra modules for $G$ from certain representations of a Cartan subgroup. The duality theorem of Hecht, Mili\vci\'c, Schmid and Wolf establishes a relationship between modules cohomologically induced from minimal parabolics and the cohomology of the $\ms{D}$-modules on the complex flag variety for $G$ determined by the Beilinson-Bernstein construction. The main results of this paper give a generalization of the duality theorem to partial flag varieties, which recovers cohomologically induced modules arising from nonminimal parabolics.

Summary

We haven't generated a summary for this paper yet.