2000 character limit reached
Localization of cohomological induction (1207.6315v2)
Published 26 Jul 2012 in math.RT
Abstract: We give a geometric realization of cohomologically induced (g,K)-modules. Let (h,L) be a subpair of (g,K). The cohomological induction is an algebraic construction of (g,K)-modules from a (h,L)-module V. For a real semisimple Lie group, the duality theorem by Hecht, Milicic, Schmid, and Wolf relates (g,K)-modules cohomologically induced from a Borel subalgebra with D-modules on the flag variety of g. In this article we extend the theorem for more general pairs (g,K) and (h,L). We consider the tensor product of a D-module and a certain module associated with V, and prove that its sheaf cohomology groups are isomorphic to cohomologically induced modules.