Leibniz algebroids, twistings and exceptional generalized geometry (1101.0856v2)
Abstract: We investigate a class of Leibniz algebroids which are invariant under diffeomorphisms and symmetries involving collections of closed forms. Under appropriate assumptions we arrive at a classification which in particular gives a construction starting from graded Lie algebras. In this case the Leibniz bracket is a derived bracket and there are higher derived brackets resulting in an $L_\infty$-structure. The algebroids can be twisted by a non-abelian cohomology class and we prove that the twisting class is described by a Maurer-Cartan equation. For compact manifolds we construct a Kuranishi moduli space of this equation which is shown to be affine algebraic. We explain how these results are related to exceptional generalized geometry.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.