Quasirandom Rumor Spreading
Abstract: We propose and analyze a quasirandom analogue of the classical push model for disseminating information in networks ("randomized rumor spreading"). In the classical model, in each round each informed vertex chooses a neighbor at random and informs it, if it was not informed before. It is known that this simple protocol succeeds in spreading a rumor from one vertex to all others within O(log n) rounds on complete graphs, hypercubes, random regular graphs, Erdos-Renyi random graph and Ramanujan graphs with probability 1-o(1). In the quasirandom model, we assume that each vertex has a (cyclic) list of its neighbors. Once informed, it starts at a random position on the list, but from then on informs its neighbors in the order of the list. Surprisingly, irrespective of the orders of the lists, the above-mentioned bounds still hold. In some cases, even better bounds than for the classical model can be shown.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.