Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quasi-Random Rumor Spreading: Reducing Randomness Can Be Costly (1008.0501v1)

Published 3 Aug 2010 in cs.DS

Abstract: We give a time-randomness tradeoff for the quasi-random rumor spreading protocol proposed by Doerr, Friedrich and Sauerwald [SODA 2008] on complete graphs. In this protocol, the goal is to spread a piece of information originating from one vertex throughout the network. Each vertex is assumed to have a (cyclic) list of its neighbors. Once a vertex is informed by one of its neighbors, it chooses a position in its list uniformly at random and then informs its neighbors starting from that position and proceeding in order of the list. Angelopoulos, Doerr, Huber and Panagiotou [Electron.~J.~Combin.~2009] showed that after $(1+o(1))(\log_2 n + \ln n)$ rounds, the rumor will have been broadcasted to all nodes with probability $1 - o(1)$. We study the broadcast time when the amount of randomness available at each node is reduced in natural way. In particular, we prove that if each node can only make its initial random selection from every $\ell$-th node on its list, then there exists lists such that $(1-\varepsilon) (\log_2 n + \ln n - \log_2 \ell - \ln \ell)+\ell-1$ steps are needed to inform every vertex with probability at least $1-O\bigl(\exp\bigl(-\frac{n\varepsilon}{2\ln n}\bigr)\bigr)$. This shows that a further reduction of the amount of randomness used in a simple quasi-random protocol comes at a loss of efficiency.

Citations (6)

Summary

We haven't generated a summary for this paper yet.