Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Good tilting modules and recollements of derived module categories (1012.2176v1)

Published 10 Dec 2010 in math.RT and math.RA

Abstract: Let $T$ be an infinitely generated tilting module of projective dimension at most one over an arbitrary associative ring $A$, and let $B$ be the endomorphism ring of $T$. In this paper, we prove that if $T$ is good then there exists a ring $C$, a homological ring epimorphism $B\ra C$ and a recollement among the (unbounded) derived module categories $\D{C}$ of $C$, $\D{B}$ of $B$, and $\D{A}$ of $A$. In particular, the kernel of the total left derived functor $T\otimes_B{\mathbb L}-$ is triangle equivalent to the derived module category $\D{C}$. Conversely, if the functor $T\otimes_B{\mathbb L}-$ admits a fully faithful left adjoint functor, then $T$ is a good tilting module. We apply our result to tilting modules arising from ring epimorphisms, and can then describe the rings $C$ as coproducts of two relevant rings. Further, in case of commutative rings, we can weaken the condition of being tilting modules, strengthen the rings $C$ as tensor products of two commutative rings, and get similar recollements. Consequently, we can produce examples (from commutative algebra and $p$-adic number theory, or Kronecker algebra) to show that two different stratifications of the derived module category of a ring by derived module categories of rings may have completely different derived composition factors (even up to ordering and up to derived equivalence),or different lengths. This shows that the Jordan-H\"older theorem fails even for stratifications by derived module categories, and also answers negatively an open problem by Angeleri-H\"ugel, K\"onig and Liu.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.