Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

On Auslander-Type Conditions of Modules (1012.1703v2)

Published 8 Dec 2010 in math.RA and math.RT

Abstract: We prove that for a left and right Noetherian ring $R$, $_RR$ satisfies the Auslander condition if and only if so does every flat left $R$-module, if and only if the injective dimension of the $i$th term in a minimal flat resolution of any injective left $R$-module is at most $i-1$ for any $i \geq 1$, if and only if the flat (resp. injective) dimension of the $i$th term in a minimal injective coresolution (resp. flat resolution) of any left $R$-module $M$ is at most the flat (resp. injective) dimension of $M$ plus $i-1$ for any $i \geq 1$, if and only if the flat (resp. injective) dimension of the injective envelope (resp. flat cover) of any left $R$-module $M$ is at most the flat (resp. injective) dimension of $M$, and if and only if any of the opposite versions of the above conditions hold true. Furthermore, we prove that for an Artinian algebra $R$ satisfying the Auslander condition, $R$ is Gorenstein if and only if the subcategory consisting of finitely generated modules satisfying the Auslander condition is contravariantly finite. As applications, we get some equivalent characterizations of Auslander-Gorenstein rings and Auslander-regular rings.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)