Local spectral radius formulas for a class of unbounded operators on Banach spaces (1011.6066v3)
Abstract: We exhibit a general class of unbounded operators in Banach spaces which can be shown to have the single-valued extension property, and for which the local spectrum at suitable points can be determined. We show that a local spectral radius formula holds, analogous to that for a globally defined bounded operator on a Banach space with the single-valued extension property. An operator of the class under consideration can occur in practice as (an extension of) a differential operator which, roughly speaking, can be diagonalised on its domain of smooth test functions via a discrete transform, such that the diagonalising transform establishes an isomorphism of topological vector spaces between the domain of the differential operator, in its own topology, and a sequence space. We give concrete examples of (extensions of) such operators (constant coefficient differential operators on the d-torus, Jacobi operators, the Hermite operator, Laguerre operators) and indicate further perspectives.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.