Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Kimi K2 210 tok/s Pro
2000 character limit reached

Local spectral radius formulas for a class of unbounded operators on Banach spaces (1011.6066v3)

Published 28 Nov 2010 in math.SP and math.FA

Abstract: We exhibit a general class of unbounded operators in Banach spaces which can be shown to have the single-valued extension property, and for which the local spectrum at suitable points can be determined. We show that a local spectral radius formula holds, analogous to that for a globally defined bounded operator on a Banach space with the single-valued extension property. An operator of the class under consideration can occur in practice as (an extension of) a differential operator which, roughly speaking, can be diagonalised on its domain of smooth test functions via a discrete transform, such that the diagonalising transform establishes an isomorphism of topological vector spaces between the domain of the differential operator, in its own topology, and a sequence space. We give concrete examples of (extensions of) such operators (constant coefficient differential operators on the d-torus, Jacobi operators, the Hermite operator, Laguerre operators) and indicate further perspectives.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.