Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

Clustering and Latent Semantic Indexing Aspects of the Singular Value Decomposition (1011.4104v4)

Published 17 Nov 2010 in cs.LG, cs.NA, and math.SP

Abstract: This paper discusses clustering and latent semantic indexing (LSI) aspects of the singular value decomposition (SVD). The purpose of this paper is twofold. The first is to give an explanation on how and why the singular vectors can be used in clustering. And the second is to show that the two seemingly unrelated SVD aspects actually originate from the same source: related vertices tend to be more clustered in the graph representation of lower rank approximate matrix using the SVD than in the original semantic graph. Accordingly, the SVD can improve retrieval performance of an information retrieval system since queries made to the approximate matrix can retrieve more relevant documents and filter out more irrelevant documents than the same queries made to the original matrix. By utilizing this fact, we will devise an LSI algorithm that mimicks SVD capability in clustering related vertices. Convergence analysis shows that the algorithm is convergent and produces a unique solution for each input. Experimental results using some standard datasets in LSI research show that retrieval performances of the algorithm are comparable to the SVD's. In addition, the algorithm is more practical and easier to use because there is no need to determine decomposition rank which is crucial in driving retrieval performance of the SVD.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)