Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Single particle Green's functions and interacting topological insulators (1011.2273v1)

Published 10 Nov 2010 in cond-mat.mes-hall, cond-mat.str-el, and cond-mat.supr-con

Abstract: We study topological insulators characterized by the integer topological invariant Z, in even and odd spacial dimensions. These are well understood in case when there are no interactions. We extend the earlier work on this subject to construct their topological invariants in terms of their Green's functions. In this form, they can be used even if there are interactions. Specializing to one and two spacial dimensions, we further show that if two topologically distinct topological insulators border each other, the difference of their topological invariants is equal to the difference between the number of zero energy boundary excitations and the number of zeroes of the Green's function at the boundary. In the absence of interactions Green's functions have no zeroes thus there are always edge states at the boundary, as is well known. In the presence of interactions, in principle Green's functions could have zeroes. In that case, there could be no edge states at the boundary of two topological insulators with different topological invariants. This may provide an alternative explanation to the recent results on one dimensional interacting topological insulators.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.