Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterization of Information Channels for Asymptotic Mean Stationarity and Stochastic Stability of Non-stationary/Unstable Linear Systems (1201.5360v3)

Published 25 Jan 2012 in cs.IT, cs.SY, math.IT, and math.OC

Abstract: Stabilization of non-stationary linear systems over noisy communication channels is considered. Stochastically stable sources, and unstable but noise-free or bounded-noise systems have been extensively studied in information theory and control theory literature since 1970s, with a renewed interest in the past decade. There have also been studies on non-causal and causal coding of unstable/non-stationary linear Gaussian sources. In this paper, tight necessary and sufficient conditions for stochastic stabilizability of unstable (non-stationary) possibly multi-dimensional linear systems driven by Gaussian noise over discrete channels (possibly with memory and feedback) are presented. Stochastic stability notions include recurrence, asymptotic mean stationarity and sample path ergodicity, and the existence of finite second moments. Our constructive proof uses random-time state-dependent stochastic drift criteria for stabilization of Markov chains. For asymptotic mean stationarity (and thus sample path ergodicity), it is sufficient that the capacity of a channel is (strictly) greater than the sum of the logarithms of the unstable pole magnitudes for memoryless channels and a class of channels with memory. This condition is also necessary under a mild technical condition. Sufficient conditions for the existence of finite average second moments for such systems driven by unbounded noise are provided.

Citations (36)

Summary

We haven't generated a summary for this paper yet.