Two-loop AdS_5 x S^5 superstring: testing asymptotic Bethe ansatz and finite size corrections (1010.4594v2)
Abstract: We continue the investigation of two-loop string corrections to the energy of a folded string with a spin S in AdS_5 and an angular momentum J in S5, in the scaling limit of large J and S with ell=pi J/(lambda1/2 ln S)=fixed. We compute the generalized scaling function at two-loop order f_2(ell) both for small and large values of ell matching the predictions based on the asymptotic Bethe ansatz. In particular, in the small ell expansion, we derive an exact integral form for the ell-dependent coefficient of the Catalan's constant term in f_2(ell). Also, by resumming a certain subclass of multi-loop Feynman diagrams we obtain an exact expression for the leading (ln ell) part of f(lambda1/2, ell) which is valid to any order in the alpha'~1/lambda1/2 expansion. At large ell the string energy has a BMN-like expansion and the first few leading coefficients are expected to be the same at weak and at strong coupling. We provide a new example of this non-renormalization for the term which is generated at two loops in string theory and at one-loop in gauge theory (sub-sub-leading in 1/J). We also derive a simple algebraic formula for the term of maximal transcendentality in f_2(ell) expanded at large ell. In the second part of the paper we initiate the study of 2-loop finite size corrections to the string energy by formally compactifying the spatial world-sheet direction in the string action expanded near long fast-spinning string. We observe that the leading finite-size corrections are of "Casimir" type coming from terms containing at least one massless propagator. We consider in detail the one-loop order (reproducing the leading Landau-Lifshitz model prediction) and then focus on the two-loop contributions to the (1/ln S) term (for J=0). We find that in a certain regularization scheme used to discard power divergences the two-loop coefficient of the (1/ln S) term appears to vanish.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.