Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform Approximation of Vapnik-Chervonenkis Classes (1010.4515v1)

Published 21 Oct 2010 in math.PR, math.ST, stat.ML, and stat.TH

Abstract: For any family of measurable sets in a probability space, we show that either (i) the family has infinite Vapnik-Chervonenkis (VC) dimension or (ii) for every epsilon > 0 there is a finite partition pi such the pi-boundary of each set has measure at most epsilon. Immediate corollaries include the fact that a family with finite VC dimension has finite bracketing numbers, and satisfies uniform laws of large numbers for every ergodic process. From these corollaries, we derive analogous results for VC major and VC graph families of functions.

Citations (13)

Summary

We haven't generated a summary for this paper yet.