Estimates of sections of determinant line bundles on Moduli spaces of pure sheaves on algebraic surfaces
Abstract: Let $X$ be any smooth simply connected projective surface. We consider some moduli space of pure sheaves of dimension one on $X$, i.e. $\mhu$ with $u=(0,L,\chi(u)=0)$ and $L$ an effective line bundle on $X$, together with a series of determinant line bundles associated to $r[\mo_X]-n[\mo_{pt}]$ in Grothendieck group of $X$. Let $g_L$ denote the arithmetic genus of curves in the linear system $\ls$. For $g_L\leq2$, we give a upper bound of the dimensions of sections of these line bundles by restricting them to a generic projective line in $\ls$. Our result gives, together with G\"ottsche's computation, a first step of a check for the strange duality for some cases for $X$ a rational surface.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.