Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Filtrations on the knot contact homology of transverse knots (1010.0450v2)

Published 3 Oct 2010 in math.SG and math.GT

Abstract: We construct a new invariant of transverse links in the standard contact structure on R3. This invariant is a doubly filtered version of the knot contact homology differential graded algebra (DGA) of the link. Here the knot contact homology of a link in R3 is the Legendrian contact homology DGA of its conormal lift into the unit cotangent bundle S*R3 of R3, and the filtrations are constructed by counting intersections of the holomorphic disks of the DGA differential with two conormal lifts of the contact structure. We also present a combinatorial formula for the filtered DGA in terms of braid representatives of transverse links and apply it to show that the new invariant is independent of previously known invariants of transverse links.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube