Higher topological complexity and its symmetrization (1009.1851v6)
Abstract: We develop the properties of the $n$-th sequential topological complexity $TC_n$, a homotopy invariant introduced by the third author as an extension of Farber's topological model for studying the complexity of motion planning algorithms in robotics. We exhibit close connections of $TC_n(X)$ to the Lusternik-Schnirelmann category of cartesian powers of $X$, to the cup-length of the diagonal embedding $X\hookrightarrow Xn$, and to the ratio between homotopy dimension and connectivity of $X$. We fully compute the numerical value of $TC_n$ for products of spheres, closed 1-connected symplectic manifolds, and quaternionic projective spaces. Our study includes two symmetrized versions of $TC_n(X)$. The first one, unlike Farber-Grant's symmetric topological complexity, turns out to be a homotopy invariant of $X$; the second one is closely tied to the homotopical properties of the configuration space of cardinality-$n$ subsets of $X$. Special attention is given to the case of spheres.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.