2000 character limit reached
Shortest paths between shortest paths and independent sets (1008.4563v3)
Published 26 Aug 2010 in cs.CC and cs.DM
Abstract: We study problems of reconfiguration of shortest paths in graphs. We prove that the shortest reconfiguration sequence can be exponential in the size of the graph and that it is NP-hard to compute the shortest reconfiguration sequence even when we know that the sequence has polynomial length. Moreover, we also study reconfiguration of independent sets in three different models and analyze relationships between these models, observing that shortest path reconfiguration is a special case of independent set reconfiguration in perfect graphs, under any of the three models. Finally, we give polynomial results for restricted classes of graphs (even-hole-free and $P_4$-free graphs).