Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Independent Set Reconfiguration in Cographs (1402.1587v1)

Published 7 Feb 2014 in cs.DM and math.CO

Abstract: We study the following independent set reconfiguration problem, called TAR-Reachability: given two independent sets $I$ and $J$ of a graph $G$, both of size at least $k$, is it possible to transform $I$ into $J$ by adding and removing vertices one-by-one, while maintaining an independent set of size at least $k$ throughout? This problem is known to be PSPACE-hard in general. For the case that $G$ is a cograph (i.e. $P_4$-free graph) on $n$ vertices, we show that it can be solved in time $O(n2)$, and that the length of a shortest reconfiguration sequence from $I$ to $J$ is bounded by $4n-2k$, if such a sequence exists. More generally, we show that if $X$ is a graph class for which (i) TAR-Reachability can be solved efficiently, (ii) maximum independent sets can be computed efficiently, and which satisfies a certain additional property, then the problem can be solved efficiently for any graph that can be obtained from a collection of graphs in $X$ using disjoint union and complete join operations. Chordal graphs are given as an example of such a class $X$.

Citations (27)

Summary

We haven't generated a summary for this paper yet.