Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 73 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Geometric Tomography With Topological Guarantees (1007.2452v2)

Published 14 Jul 2010 in cs.CG and math.GN

Abstract: We consider the problem of reconstructing a compact 3-manifold (with boundary) embedded in $\mathbb{R}3$ from its cross-sections $\mathcal S$ with a given set of cutting planes $\mathcal P$ having arbitrary orientations. Using the obvious fact that a point $x \in \mathcal P$ belongs to the original object if and only if it belongs to $\mathcal S$, we follow a very natural reconstruction strategy: we say that a point $x \in \mathbb{R}3$ belongs to the reconstructed object if (at least one of) its nearest point(s) in $\mathcal P$ belongs to $\mathcal S$. This coincides with the algorithm presented by Liu et al. in \cite{LB+08}. In the present paper, we prove that under appropriate sampling conditions, the output of this algorithm preserves the homotopy type of the original object. Using the homotopy equivalence, we also show that the reconstructed object is homeomorphic (and isotopic) to the original object. This is the first time that 3-dimensional shape reconstruction from cross-sections comes with theoretical guarantees.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com