Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Born-Oppenheimer potential for H$_2$ (1007.0322v2)

Published 2 Jul 2010 in physics.chem-ph

Abstract: The Born-Oppenheimer potential for the $1\Sigma_g+$ state of H$_2$ is obtained in the range of 0.1 -- 20 au, using analytic formulas and recursion relations for two-center two-electron integrals with exponential functions. For small distances James-Coolidge basis is used, while for large distances the Heitler-London functions with arbitrary polynomial in electron variables. In the whole range of internuclear distance about $10{-15}$ precision is achieved, as an example at the equilibrium distance $r=1.4011$ au the Born-Oppenheimer potential amounts to $-1.174\,475\,931\,400\,216\,7(3)$. Results for the exchange energy verify the formula of Herring and Flicker [Phys. Rev. {\bf 134}, A362 (1964)] for the large internuclear distance asymptotics. The presented analytic approach to Slater integrals opens a window for the high precision calculations in an arbitrary diatomic molecule.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)