Papers
Topics
Authors
Recent
2000 character limit reached

Long-Time Asymptotics for Solutions of the NLS Equation with a Delta Potential and Even Initial Data

Published 25 Jun 2010 in math.AP | (1006.4909v2)

Abstract: We consider the one-dimensional focusing nonlinear Schr\"odinger equation (NLS) with a delta potential and even initial data. The problem is equivalent to the solution of the initial/boundary problem for NLS on a half-line with Robin boundary conditions at the origin. We follow the method of Bikbaev and Tarasov which utilizes a B\"acklund transformation to extend the solution on the half-line to a solution of the NLS equation on the whole line. We study the asymptotic stability of the stationary 1-soliton solution of the equation under perturbation by applying the nonlinear steepest-descent method for Riemann-Hilbert problems introduced by Deift and Zhou. Our work strengthens, and extends, earlier work on the problem by Holmer and Zworski.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.