Finite elements modelling of scattering problems for flexural waves in thin plates: Application to elliptic invisibility cloaks, rotators and the mirage effect (1006.3613v1)
Abstract: We propose a finite elements algorithm to solve a fourth order partial differential equation governing the propagation of time-harmonic bending waves in thin elastic plates. Specially designed perfectly matched layers are implemented to deal with the infinite extent of the plates. These are deduced from a geometric transform in the biharmonic equation. To numerically illustrate the power of elastodynamic transformations, we analyse the elastic response of an elliptic invisibility cloak surrounding a clamped obstacle in the presence of a cylindrical excitation i.e. a concentrated point force. Elliptic cloaking for flexural waves involves a density and an orthotropic Young's modulus which depend on the radial and azimuthal positions, as deduced from a coordinates transformation for circular cloaks in the spirit of Pendry et al. [Science {\bf 312}, 1780 (2006)], but with a further stretch of a coordinate axis. We find that a wave radiated by a concentrated point force located a couple of wavelengths away from the cloak is almost unperturbed in magnitude and in phase. However, when the point force lies within the coating, it seems to radiate from a shifted location. Finally, we emphasize the versatility of transformation elastodynamics with the design of an elliptic cloak which rotates the polarization of a flexural wave within its core.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.