Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

An Operator Product Expansion for Polygonal null Wilson Loops (1006.2788v2)

Published 14 Jun 2010 in hep-th

Abstract: We consider polygonal Wilson loops with null edges in conformal gauge theories. We derive an OPE-like expansion when several successive lines of the polygon are becoming aligned. The limit corresponds to a collinear, or multicollinear, limit and we explain the systematics of all the subleading corrections, going beyond the leading terms that were previously considered. These subleading corrections are governed by excitations of high spin operators, or excitations of a flux tube that goes between two Wilson lines. The discussion is valid for any conformal gauge theory, for any coupling and in any dimension. For N=4 super Yang Mills we check this expansion at strong coupling and at two loops at weak coupling . We also make predictions for the remainder function at higher loops. In the process, we also derived a new version for the TBA integral equations that determine the strong coupling answer and present the area as the associated Yang-Yang functional.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.