Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Full Groups and Orbit Equivalence in Cantor Dynamics (1006.1145v2)

Published 6 Jun 2010 in math.DS

Abstract: In this note we consider dynamical systems $(X,G)$ on a Cantor set $X$ satisfying some mild technical conditions. The considered class includes, in particular, minimal and transitive aperiodic systems. We prove that two such systems $(X_1,G_1)$ and $(X_2,G_2)$ are orbit equivalent if and only if their full groups are isomorphic as abstract groups. This result is a topological version of the well-known Dye's theorem established originally for ergodic measure-preserving actions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)