Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the stable recovery of the sparsest overcomplete representations in presence of noise (1006.0304v1)

Published 2 Jun 2010 in cs.IT and math.IT

Abstract: Let x be a signal to be sparsely decomposed over a redundant dictionary A, i.e., a sparse coefficient vector s has to be found such that x=As. It is known that this problem is inherently unstable against noise, and to overcome this instability, the authors of [Stable Recovery; Donoho et.al., 2006] have proposed to use an "approximate" decomposition, that is, a decomposition satisfying ||x - A s|| < \delta, rather than satisfying the exact equality x = As. Then, they have shown that if there is a decomposition with ||s||_0 < (1+M{-1})/2, where M denotes the coherence of the dictionary, this decomposition would be stable against noise. On the other hand, it is known that a sparse decomposition with ||s||_0 < spark(A)/2 is unique. In other words, although a decomposition with ||s||_0 < spark(A)/2 is unique, its stability against noise has been proved only for highly more restrictive decompositions satisfying ||s||_0 < (1+M{-1})/2, because usually (1+M{-1})/2 << spark(A)/2. This limitation maybe had not been very important before, because ||s||_0 < (1+M{-1})/2 is also the bound which guaranties that the sparse decomposition can be found via minimizing the L1 norm, a classic approach for sparse decomposition. However, with the availability of new algorithms for sparse decomposition, namely SL0 and Robust-SL0, it would be important to know whether or not unique sparse decompositions with (1+M{-1})/2 < ||s||_0 < spark(A)/2 are stable. In this paper, we show that such decompositions are indeed stable. In other words, we extend the stability bound from ||s||_0 < (1+M{-1})/2 to the whole uniqueness range ||s||_0 < spark(A)/2. In summary, we show that "all unique sparse decompositions are stably recoverable". Moreover, we see that sparser decompositions are "more stable".

Summary

We haven't generated a summary for this paper yet.