Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating Unknown Sparsity in Compressed Sensing (1204.4227v2)

Published 19 Apr 2012 in cs.IT, math.IT, math.ST, stat.ME, stat.ML, and stat.TH

Abstract: In the theory of compressed sensing (CS), the sparsity ||x||_0 of the unknown signal x\in\Rp is commonly assumed to be a known parameter. However, it is typically unknown in practice. Due to the fact that many aspects of CS depend on knowing ||x||_0, it is important to estimate this parameter in a data-driven way. A second practical concern is that ||x||_0 is a highly unstable function of x. In particular, for real signals with entries not exactly equal to 0, the value ||x||_0=p is not a useful description of the effective number of coordinates. In this paper, we propose to estimate a stable measure of sparsity s(x):=||x||_12/||x||_22, which is a sharp lower bound on ||x||_0. Our estimation procedure uses only a small number of linear measurements, does not rely on any sparsity assumptions, and requires very little computation. A confidence interval for s(x) is provided, and its width is shown to have no dependence on the signal dimension p. Moreover, this result extends naturally to the matrix recovery setting, where a soft version of matrix rank can be estimated with analogous guarantees. Finally, we show that the use of randomized measurements is essential to estimating s(x). This is accomplished by proving that the minimax risk for estimating s(x) with deterministic measurements is large when n<<p.

Citations (112)

Summary

We haven't generated a summary for this paper yet.