Equivalence classes of permutations avoiding a pattern (1005.5419v1)
Abstract: Given a permutation pattern p and an equivalence relation on permutations, we study the corresponding equivalence classes all of whose members avoid p. Four relations are studied: Conjugacy, order isomorphism, Knuth-equivalence and toric equivalence. Each of these produces a known class of permutations or a known counting sequence. For example, involutions correspond to conjugacy, and permutations whose insertion tableau is hook-shaped with 2 in the first row correspond to Knuth-equivalence. These permutations are equinumerous with certain congruence classes of graph endomorphisms. In the case of toric equivalence we find a class of permutations that are counted by the Euler totient function, with a subclass counted by the number-of-divisors function. We also provide a new symmetry for bivincular patterns that produces some new non-trivial Wilf-equivalences
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.