Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 88 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 207 tok/s Pro
2000 character limit reached

Semilinear Backward Doubly Stochastic Differential Equations and SPDEs Driven by Fractional Brownian Motion with Hurst Parameter in (0,1/2) (1005.2017v1)

Published 12 May 2010 in math.PR

Abstract: We study the existence of a unique solution to semilinear fractional backward doubly stochastic differential equation driven by a Brownian motion and a fractional Brownian motion with Hurst parameter less than 1/2. Here the stochastic integral with respect to the fractional Brownian motion is the extended divergence operator and the one with respect to Brownian motion is It^o's backward integral. For this we use the technique developed by R.Buckdahn to analyze stochastic differential equations on the Wiener space, which is based on the Girsanov theorem and the Malliavin calculus, and we reduce the backward doubly stochastic differential equation to a backward stochastic differential equation driven by the Brownian motion. We also prove that the solution of semilinear fractional backward doubly stochastic differential equation defines the unique stochastic viscosity solution of a semilinear stochastic partial differential equation driven by a fractional Brownian motion.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)