Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal A Posteriori Metrics Game (1004.4815v1)

Published 27 Apr 2010 in cs.IT, math.IT, and math.PR

Abstract: Over binary input channels, uniform distribution is a universal prior, in the sense that it allows to maximize the worst case mutual information over all binary input channels, ensuring at least 94.2% of the capacity. In this paper, we address a similar question, but with respect to a universal generalized linear decoder. We look for the best collection of finitely many a posteriori metrics, to maximize the worst case mismatched mutual information achieved by decoding with these metrics (instead of an optimal decoder such as the Maximum Likelihood (ML) tuned to the true channel). It is shown that for binary input and output channels, two metrics suffice to actually achieve the same performance as an optimal decoder. In particular, this implies that there exist a decoder which is generalized linear and achieves at least 94.2% of the compound capacity on any compound set, without the knowledge of the underlying set.

Citations (1)

Summary

We haven't generated a summary for this paper yet.