Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Neyman-Pearson Approach to Universal Erasure and List Decoding (0801.4544v1)

Published 29 Jan 2008 in cs.IT and math.IT

Abstract: When information is to be transmitted over an unknown, possibly unreliable channel, an erasure option at the decoder is desirable. Using constant-composition random codes, we propose a generalization of Csiszar and Korner's Maximum Mutual Information decoder with erasure option for discrete memoryless channels. The new decoder is parameterized by a weighting function that is designed to optimize the fundamental tradeoff between undetected-error and erasure exponents for a compound class of channels. The class of weighting functions may be further enlarged to optimize a similar tradeoff for list decoders -- in that case, undetected-error probability is replaced with average number of incorrect messages in the list. Explicit solutions are identified. The optimal exponents admit simple expressions in terms of the sphere-packing exponent, at all rates below capacity. For small erasure exponents, these expressions coincide with those derived by Forney (1968) for symmetric channels, using Maximum a Posteriori decoding. Thus for those channels at least, ignorance of the channel law is inconsequential. Conditions for optimality of the Csiszar-Korner rule and of the simpler empirical-mutual-information thresholding rule are identified. The error exponents are evaluated numerically for the binary symmetric channel.

Citations (13)

Summary

We haven't generated a summary for this paper yet.