Papers
Topics
Authors
Recent
Search
2000 character limit reached

Where is Randomness Needed to Break the Square-Root Bottleneck?

Published 22 Apr 2010 in cs.IT and math.IT | (1004.3878v1)

Abstract: As shown by Tropp, 2008, for the concatenation of two orthonormal bases (ONBs), breaking the square-root bottleneck in compressed sensing does not require randomization over all the positions of the nonzero entries of the sparse coefficient vector. Rather the positions corresponding to one of the two ONBs can be chosen arbitrarily. The two-ONB structure is, however, restrictive and does not reveal the property that is responsible for allowing to break the bottleneck with reduced randomness. For general dictionaries we show that if a sub-dictionary with small enough coherence and large enough cardinality can be isolated, the bottleneck can be broken under the same probabilistic model on the sparse coefficient vector as in the two-ONB case.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.