Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncertainty Relations for Shift-Invariant Analog Signals (0809.3731v2)

Published 22 Sep 2008 in cs.IT and math.IT

Abstract: The past several years have witnessed a surge of research investigating various aspects of sparse representations and compressed sensing. Most of this work has focused on the finite-dimensional setting in which the goal is to decompose a finite-length vector into a given finite dictionary. Underlying many of these results is the conceptual notion of an uncertainty principle: a signal cannot be sparsely represented in two different bases. Here, we extend these ideas and results to the analog, infinite-dimensional setting by considering signals that lie in a finitely-generated shift-invariant (SI) space. This class of signals is rich enough to include many interesting special cases such as multiband signals and splines. By adapting the notion of coherence defined for finite dictionaries to infinite SI representations, we develop an uncertainty principle similar in spirit to its finite counterpart. We demonstrate tightness of our bound by considering a bandlimited lowpass train that achieves the uncertainty principle. Building upon these results and similar work in the finite setting, we show how to find a sparse decomposition in an overcomplete dictionary by solving a convex optimization problem. The distinguishing feature of our approach is the fact that even though the problem is defined over an infinite domain with infinitely many variables and constraints, under certain conditions on the dictionary spectrum our algorithm can find the sparsest representation by solving a finite-dimensional problem.

Citations (43)

Summary

We haven't generated a summary for this paper yet.