Light-like polygonal Wilson loops in 3d Chern-Simons and ABJM theory (1004.0226v3)
Abstract: We study light-like polygonal Wilson loops in three-dimensional Chern-Simons and ABJM theory to two-loop order. For both theories we demonstrate that the one-loop contribution to these correlators cancels. For pure Chern-Simons, we find that specific UV divergences arise from diagrams involving two cusps, implying the loss of finiteness and topological invariance at two-loop order. Studying those UV divergences we derive anomalous conformal Ward identities for n-cusped Wilson loops which restrict the finite part of the latter to conformally invariant functions. We also compute the four-cusp Wilson loop in ABJM theory to two-loop order and find that the result is remarkably similar to that of the corresponding Wilson loop in N=4 SYM. Finally, we speculate about the existence of a Wilson loop/scattering amplitude relation in ABJM theory.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.