Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning by random walks in the weight space of the Ising perceptron (1003.1020v2)

Published 4 Mar 2010 in cond-mat.dis-nn, cond-mat.stat-mech, cs.LG, and q-bio.NC

Abstract: Several variants of a stochastic local search process for constructing the synaptic weights of an Ising perceptron are studied. In this process, binary patterns are sequentially presented to the Ising perceptron and are then learned as the synaptic weight configuration is modified through a chain of single- or double-weight flips within the compatible weight configuration space of the earlier learned patterns. This process is able to reach a storage capacity of $\alpha \approx 0.63$ for pattern length N = 101 and $\alpha \approx 0.41$ for N = 1001. If in addition a relearning process is exploited, the learning performance is further improved to a storage capacity of $\alpha \approx 0.80$ for N = 101 and $\alpha \approx 0.42$ for N=1001. We found that, for a given learning task, the solutions constructed by the random walk learning process are separated by a typical Hamming distance, which decreases with the constraint density $\alpha$ of the learning task; at a fixed value of $\alpha$, the width of the Hamming distance distributions decreases with $N$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.