Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New graph polynomials from the Bethe approximation of the Ising partition function (0908.3850v2)

Published 26 Aug 2009 in math.CO and cs.DM

Abstract: We introduce two graph polynomials and discuss their properties. One is a polynomial of two variables whose investigation is motivated by the performance analysis of the Bethe approximation of the Ising partition function. The other is a polynomial of one variable that is obtained by the specialization of the first one. It is shown that these polynomials satisfy deletion-contraction relations and are new examples of the V-function, which was introduced by Tutte (1947, Proc. Cambridge Philos. Soc. 43, 26-40). For these polynomials, we discuss the interpretations of special values and then obtain the bound on the number of sub-coregraphs, i.e., spanning subgraphs with no vertices of degree one. It is proved that the polynomial of one variable is equal to the monomer-dimer partition function with weights parameterized by that variable. The properties of the coefficients and the possible region of zeros are also discussed for this polynomial.

Citations (7)

Summary

We haven't generated a summary for this paper yet.