Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Channel Coding Perspective of Collaborative Filtering (0908.2494v1)

Published 18 Aug 2009 in cs.IT and math.IT

Abstract: We consider the problem of collaborative filtering from a channel coding perspective. We model the underlying rating matrix as a finite alphabet matrix with block constant structure. The observations are obtained from this underlying matrix through a discrete memoryless channel with a noisy part representing noisy user behavior and an erasure part representing missing data. Moreover, the clusters over which the underlying matrix is constant are {\it unknown}. We establish a sharp threshold result for this model: if the largest cluster size is smaller than $C_1 \log(mn)$ (where the rating matrix is of size $m \times n$), then the underlying matrix cannot be recovered with any estimator, but if the smallest cluster size is larger than $C_2 \log(mn)$, then we show a polynomial time estimator with diminishing probability of error. In the case of uniform cluster size, not only the order of the threshold, but also the constant is identified.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.