Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

First Class Constrained Systems and Twisting of Courant Algebroids by a Closed 4-form (0904.0711v1)

Published 4 Apr 2009 in hep-th, math-ph, math.DG, and math.MP

Abstract: We show that in analogy to the introduction of Poisson structures twisted by a closed 3-form by Park and Klimcik-Strobl, the study of three dimensional sigma models with Wess-Zumino term leads in a likewise way to twisting of Courant algebroid structures by closed 4-forms H. The presentation is kept pedagogical and accessible to physicists as well as to mathematicians, explaining in detail in particular the interplay of field transformations in a sigma model with the type of geometrical structures induced on a target. In fact, as we also show, even if one does not know the mathematical concept of a Courant algebroid, the study of a rather general class of 3-dimensional sigma models leads one to that notion by itself. Courant algebroids became of relevance for mathematical physics lately from several perspectives - like for example by means of using generalized complex structures in String Theory. One may expect that their twisting by the curvature H of some 3-form Ramond-Ramond gauge field will become of relevance as well.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.