Efficiently Learning a Detection Cascade with Sparse Eigenvectors (0903.3103v1)
Abstract: In this work, we first show that feature selection methods other than boosting can also be used for training an efficient object detector. In particular, we introduce Greedy Sparse Linear Discriminant Analysis (GSLDA) \cite{Moghaddam2007Fast} for its conceptual simplicity and computational efficiency; and slightly better detection performance is achieved compared with \cite{Viola2004Robust}. Moreover, we propose a new technique, termed Boosted Greedy Sparse Linear Discriminant Analysis (BGSLDA), to efficiently train a detection cascade. BGSLDA exploits the sample re-weighting property of boosting and the class-separability criterion of GSLDA.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.