Papers
Topics
Authors
Recent
Search
2000 character limit reached

Are black holes in alternative theories serious astrophysical candidates? The case for Einstein-Dilaton-Gauss-Bonnet black holes

Published 10 Feb 2009 in gr-qc, astro-ph.HE, and hep-th | (0902.1569v3)

Abstract: It is generally accepted that Einstein's theory will get some as yet unknown corrections, possibly large in the strong field regime. An ideal place to look for these modifications is around the vicinities of compact objects such as black holes. Our case study here are Dilatonic Black Holes, which arise in the framework of Gauss-Bonnet couplings and one-loop corrected four-dimensional effective theory of heterotic superstrings at low energies. These are interesting objects as a prototype for alternative, yet well-behaved gravity theories: they evade the "no-hair" theorem of General Relativity but were proved to be stable against radial perturbations. We investigate the viability of these black holes as astrophysical objects and try to provide some means to distinguish them from black holes in General Relativity. We start by extending previous works and establishing the stability of these black holes against axial perturbations. We then look for solutions of the field equations describing slowly rotating black holes and study geodesic motion around this geometry. Depending on the values of mass, dilaton charge and angular momentum of the solution, one can have measurable differences in the ISCO location and orbital frequency, relatively to black holes in General Relativity. Such differences may be useful in future experiments, to discriminate between alternative theories of gravity.

Citations (155)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.