Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Triple linking numbers, ambiguous Hopf invariants and integral formulas for three-component links (0901.1612v1)

Published 12 Jan 2009 in math.GT and math.DG

Abstract: Three-component links in the 3-dimensional sphere were classified up to link homotopy by John Milnor in his senior thesis, published in 1954. A complete set of invariants is given by the pairwise linking numbers p, q and r of the components, and by the residue class of one further integer mu, the "triple linking number" of the title, which is well-defined modulo the greatest common divisor of p, q and r. To each such link L we associate a geometrically natural characteristic map g_L from the 3-torus to the 2-sphere in such a way that link homotopies of L become homotopies of g_L. Maps of the 3-torus to the 2-sphere were classified up to homotopy by Lev Pontryagin in 1941. A complete set of invariants is given by the degrees p, q and r of their restrictions to the 2-dimensional coordinate subtori, and by the residue class of one further integer nu, an "ambiguous Hopf invariant" which is well-defined modulo twice the greatest common divisor of p, q and r. We show that the pairwise linking numbers p, q and r of the components of L are equal to the degrees of its characteristic map g_L restricted to the 2-dimensional subtori, and that twice Milnor's mu-invariant for L is equal to Pontryagin's nu-invariant for g_L. When p, q and r are all zero, the mu- and nu-invariants are ordinary integers. In this case we use J. H. C. Whitehead's integral formula for the Hopf invariant, adapted to maps of the 3-torus to the 2-sphere, together with a formula for the fundamental solution of the scalar Laplacian on the 3-torus as a Fourier series in three variables, to provide an explicit integral formula for nu, and hence for mu.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.