Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate Sparse Decomposition Based on Smoothed L0-Norm (0811.2868v1)

Published 18 Nov 2008 in cs.MM, cs.IT, and math.IT

Abstract: In this paper, we propose a method to address the problem of source estimation for Sparse Component Analysis (SCA) in the presence of additive noise. Our method is a generalization of a recently proposed method (SL0), which has the advantage of directly minimizing the L0-norm instead of L1-norm, while being very fast. SL0 is based on minimization of the smoothed L0-norm subject to As=x. In order to better estimate the source vector for noisy mixtures, we suggest then to remove the constraint As=x, by relaxing exact equality to an approximation (we call our method Smoothed L0-norm Denoising or SL0DN). The final result can then be obtained by minimization of a proper linear combination of the smoothed L0-norm and a cost function for the approximation. Experimental results emphasize on the significant enhancement of the modified method in noisy cases.

Citations (8)

Summary

We haven't generated a summary for this paper yet.