Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new inexact iterative hard thresholding algorithm for compressed sensing (1402.5750v1)

Published 24 Feb 2014 in cs.IT and math.IT

Abstract: Compressed sensing (CS) demonstrates that a sparse, or compressible signal can be acquired using a low rate acquisition process below the Nyquist rate, which projects the signal onto a small set of vectors incoherent with the sparsity basis. In this paper, we propose a new framework for compressed sensing recovery problem using iterative approximation method via L0 minimization. Instead of directly solving the unconstrained L0 norm optimization problem, we use the linearization and proximal points techniques to approximate the penalty function at each iteration. The proposed algorithm is very simple, efficient, and proved to be convergent. Numerical simulation demonstrates our conclusions and indicates that the algorithm can improve the reconstruction quality.

Citations (1)

Summary

We haven't generated a summary for this paper yet.