Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The List-Decoding Size of Reed-Muller Codes (0811.2356v1)

Published 14 Nov 2008 in cs.IT, cs.DM, and math.IT

Abstract: In this work we study the list-decoding size of Reed-Muller codes. Given a received word and a distance parameter, we are interested in bounding the size of the list of Reed-Muller codewords that are within that distance from the received word. Previous bounds of Gopalan, Klivans and Zuckerman \cite{GKZ08} on the list size of Reed-Muller codes apply only up to the minimum distance of the code. In this work we provide asymptotic bounds for the list-decoding size of Reed-Muller codes that apply for {\em all} distances. Additionally, we study the weight distribution of Reed-Muller codes. Prior results of Kasami and Tokura \cite{KT70} on the structure of Reed-Muller codewords up to twice the minimum distance, imply bounds on the weight distribution of the code that apply only until twice the minimum distance. We provide accumulative bounds for the weight distribution of Reed-Muller codes that apply to {\em all} distances.

Citations (7)

Summary

We haven't generated a summary for this paper yet.