Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Algebraic Decoding of $q$-ary Reed-Muller and Product-Reed-Solomon Codes (0704.2811v1)

Published 22 Apr 2007 in cs.IT, cs.DM, and math.IT

Abstract: We consider a list decoding algorithm recently proposed by Pellikaan-Wu \cite{PW2005} for $q$-ary Reed-Muller codes $\mathcal{RM}q(\ell, m, n)$ of length $n \leq qm$ when $\ell \leq q$. A simple and easily accessible correctness proof is given which shows that this algorithm achieves a relative error-correction radius of $\tau \leq (1 - \sqrt{{\ell q{m-1}}/{n}})$. This is an improvement over the proof using one-point Algebraic-Geometric codes given in \cite{PW2005}. The described algorithm can be adapted to decode Product-Reed-Solomon codes. We then propose a new low complexity recursive algebraic decoding algorithm for Reed-Muller and Product-Reed-Solomon codes. Our algorithm achieves a relative error correction radius of $\tau \leq \prod{i=1}m (1 - \sqrt{k_i/q})$. This technique is then proved to outperform the Pellikaan-Wu method in both complexity and error correction radius over a wide range of code rates.

Citations (10)

Summary

We haven't generated a summary for this paper yet.