Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sampling and Reconstruction of Sparse Signals in Shift-Invariant Spaces: Generalized Shannon's Theorem Meets Compressive Sensing (2010.15618v2)

Published 29 Oct 2020 in eess.SP, cs.IT, and math.IT

Abstract: This paper introduces a novel framework and corresponding methods for sampling and reconstruction of sparse signals in shift-invariant (SI) spaces. We reinterpret the random demodulator, a system that acquires sparse bandlimited signals, as a system for the acquisition of linear combinations of the samples in the SI setting with the box function as the sampling kernel. The sparsity assumption is exploited by the compressive sensing (CS) paradigm for a recovery of the SI samples from a reduced set of measurements. The SI samples are subsequently filtered by a discrete-time correction filter to reconstruct expansion coefficients of the observed signal. Furthermore, we offer a generalization of the proposed framework to other compactly supported sampling kernels that span a wider class of SI spaces. The generalized method embeds the correction filter in the CS optimization problem which directly reconstructs expansion coefficients of the signal. Both approaches recast an inherently continuous-domain inverse problem in a set of finite-dimensional CS problems in an exact way. Finally, we conduct numerical experiments on signals in polynomial B-spline spaces whose expansion coefficients are assumed to be sparse in a certain transform domain. The coefficients can be regarded as parametric models of an underlying continuous-time signal, obtained from a reduced set of measurements. Such continuous signal representations are particularly suitable for signal processing without converting them into samples.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Tin Vlašić (6 papers)
  2. Damir Seršić (7 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.