Papers
Topics
Authors
Recent
Search
2000 character limit reached

Hash Property and Coding Theorems for Sparse Matrices and Maximum-Likelihood Coding

Published 25 Jan 2008 in cs.IT and math.IT | (0801.3878v2)

Abstract: The aim of this paper is to prove the achievability of several coding problems by using sparse matrices (the maximum column weight grows logarithmically in the block length) and maximal-likelihood (ML) coding. These problems are the Slepian-Wolf problem, the Gel'fand-Pinsker problem, the Wyner-Ziv problem, and the One-helps-one problem (source coding with partial side information at the decoder). To this end, the notion of a hash property for an ensemble of functions is introduced and it is proved that an ensemble of $q$-ary sparse matrices satisfies the hash property. Based on this property, it is proved that the rate of codes using sparse matrices and maximal-likelihood (ML) coding can achieve the optimal rate.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.