Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hash Property and Coding Theorems for Sparse Matrices and Maximum-Likelihood Coding (0801.3878v2)

Published 25 Jan 2008 in cs.IT and math.IT

Abstract: The aim of this paper is to prove the achievability of several coding problems by using sparse matrices (the maximum column weight grows logarithmically in the block length) and maximal-likelihood (ML) coding. These problems are the Slepian-Wolf problem, the Gel'fand-Pinsker problem, the Wyner-Ziv problem, and the One-helps-one problem (source coding with partial side information at the decoder). To this end, the notion of a hash property for an ensemble of functions is introduced and it is proved that an ensemble of $q$-ary sparse matrices satisfies the hash property. Based on this property, it is proved that the rate of codes using sparse matrices and maximal-likelihood (ML) coding can achieve the optimal rate.

Citations (7)

Summary

We haven't generated a summary for this paper yet.