Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Most General Edge Elimination Polynomial - Thickening of Edges (0801.1600v1)

Published 10 Jan 2008 in math.CO and cs.CC

Abstract: We consider a graph polynomial \xi(G;x,y,z) introduced by Averbouch, Godlin, and Makowsky (2007). This graph polynomial simultaneously generalizes the Tutte polynomial as well as a bivariate chromatic polynomial defined by Dohmen, Poenitz and Tittmann (2003). We derive an identity which relates the graph polynomial of a thicked graph (i.e. a graph with each edge replaced by k copies of it) to the graph polynomial of the original graph. As a consequence, we observe that at every point (x,y,z), except for points lying within some set of dimension 2, evaluating \xi is #P-hard.

Citations (15)

Summary

We haven't generated a summary for this paper yet.