Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 105 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 193 tok/s Pro
2000 character limit reached

A Novel Model of Working Set Selection for SMO Decomposition Methods (0706.0585v1)

Published 5 Jun 2007 in cs.LG and cs.AI

Abstract: In the process of training Support Vector Machines (SVMs) by decomposition methods, working set selection is an important technique, and some exciting schemes were employed into this field. To improve working set selection, we propose a new model for working set selection in sequential minimal optimization (SMO) decomposition methods. In this model, it selects B as working set without reselection. Some properties are given by simple proof, and experiments demonstrate that the proposed method is in general faster than existing methods.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.